Нові коментарі
Ірина
21 березня 2025 17:30
 Книга про те, як контролювати себе і свої бажання. Дізналася, чому ми робимо те, що робимо, і як стати сильнішою.
Сила волі - Келлі Макгонігал
23 лютого 2025 15:54
«Доктор Сон» Стівена Кінга — це не просто продовження класичного роману «Сяйво», а й глибоке дослідження теми відродження, внутрішніх травм та
Доктор Сон - Стівен Кінг
15 листопада 2024 18:15
Шановна пані Галино, дякуємо Вам за Вашу творчість! Ми виправили вказану Вами неточність. Дякуємо за проявлену увагу. З повагою, адміністрація сайту
З Божою правдою
3 липня 2024 02:48
Щиро вам дякую за увагу до моєї казки з книги казок ''Богданія''. На кожному з двох сайтів, з якого ви могли передрукувати цю казку, у змісті
З Божою правдою
Українські Книги Онлайн » Публіцистика » Пришестя роботів: техніка і загроза майбутнього безробіття - Мартін Форд

Пришестя роботів: техніка і загроза майбутнього безробіття - Мартін Форд

Читаємо онлайн Пришестя роботів: техніка і загроза майбутнього безробіття - Мартін Форд
так само надають можливість краще зрозуміти той шлях, яким, скоріш за все, буде розвиватися інформаційно керована автоматизація. Google не збирався копіювати людський стиль кермування — насправді це було би поза межами нинішніх можливостей штучного інтелекту. Натомість ця компанія спростила проблему: вона створила потужну систему обробки даних, а потім поставила її на колеса. Ґуґлівські автомобілі рухаються шляхами, покладаючись на точну фіксацію свого місцеперебування за допомогою системи GPS, а також на величезну кількість надзвичайно детальних картографічних даних. Ясна річ, автомобілі також оснащені радарами, лазерними далекомірами та іншими системами, що надають безперервний потік інформації в реальному часі і забезпечують автомобілю можливість адаптуватися до нових ситуацій, наприклад, коли пішохід сходить з тротуару на дорогу. Можливо, кермування — не професія «білих комірців», але цю загальну стратегію компанії Google можна поширити на велику кількість інших галузей: спершу слід використовувати масивні обсяги ретроспективної інформації для створення загальної «карти», яка дасть змогу алгоритмам прокладати собі маршрут, виконуючи рутинні завдання. Потім потрібно вмонтувати самонавчальні системи, здатні адаптуватися до різних варіантів і до непередбачених ситуацій. Як наслідок, ви неодмінно отримаєте кмітливе програмне забезпечення, спроможне виконувати велику кількість інтелектуальних операцій з високим ступенем надійності.

Другий і, мабуть, більш значущий вплив на інтелектуальні робо́ти відбудеться як результат того способу, в який великі масиви даних змінюють організації, та тих методів, за допомогою яких ними керують. Великі масиви даних і прогностичні алгоритми володіють потенціалом до трансформації природи й кількості інтелектуальних робочих місць у широкому спектрі організацій і галузей. Прогнози, які можна отримати з даних, дедалі більше використовуватимуться для заміни таких людських функціональних якостей, як досвід і здатність робити висновки. Що частіше керівники вищого рангу вдаватимуться до використання інформаційно-керованих комп’ютерів для прийняття рішень, то дедалі зменшуватиметься потреба в залученні великої кількості менеджерів та аналітиків. Там, де сьогодні ми бачимо команду досвідчених працівників-інтелектуалів, які збирають інформацію і надають свої аналітичні висновки керівникам різних рівнів, насамкінець можуть залишитися тільки один керівник і один потужний алгоритм. Розміри організацій неминуче зменшаться. Прошарки менеджерів середнього рівня зникнуть, а велика кількість операцій, що нині виконують клерки та досвідчені аналітики, просто зникнуть назавжди.

WorkFusion, новопостала компанія з передмістя Нью-Йорка, це особливо яскравий приклад того нищівного впливу, який автоматизація інтелектуальних робіт неодмінно справить на організації. Ця компанія пропонує великим корпораціям платформу з інтелектуальним програмним забезпеченням, яке майже повністю керує виконанням проектів, що колись були надзвичайно трудомісткими, і робить це за допомогою залучення нештатних працівників і автоматизації.

Програмне забезпечення від компанії WorkFusion спочатку аналізує проект, щоб визначити, які завдання піддаються прямій автоматизації, які можна буде передати нештатним працівникам, а які мусять виконуватися професіоналами, які працюють в штаті. Потім програма автоматично розсилає перелік робіт на веб-сайти типу Elance або Craigslist і керує відбором та наймом кваліфікованих нештатних працівників. Після завершення рекрутингу програма розподіляє завдання й оцінює ефективність їхнього виконання. Зокрема, вона робить це, ставлячи нештатним працівникам запитання, відповіді на які їй вже відомі, і, таким чином, здійснює безперервну перевірку точності їхньої роботи. Програма відстежує такі кількісні параметри продуктивності праці, як-от швидкість набору, і автоматично звіряє завдання з можливостями індивідів. Якщо якась конкретна особа нездатна завершити поставлене завдання, то система автоматично передає його тому, хто має необхідні навички.

Тимчасом як ця програма майже повністю автоматизує керування проектом і різко зменшує потребу в штатних працівниках, такий принцип роботи, звісно, створює нові можливості для працівників-фрілансерів. Однак історія на цьому не закінчується. Коли люди виходять на завершальний етап виконання своїх завдань, алгоритми машинного навчання, створені компанією WorkFusion, здійснюють безперервний пошук можливостей подальшої автоматизації цього процесу. Іншими словами, навіть тоді, коли фрілансери працюють під керівництвом системи, вони одночасно генерують навчальні дані, які поступово спричиняться до того, що їхня робота також буде повністю автоматизована, і потреба в їхніх послугах відпаде.

Одним з перших проектів цієї компанії передбачався пошук інформації, необхідної для того, щоб оновити добірку документів з близько сорока тисячами записів. Раніше підприємство-клієнт здійснювало цей процес щорічно, залучаючи для цього штатний персонал, який обходився в чотири долара за кожен запис. Опісля переходу на платформу компанії WorkFusion клієнти отримали можливість поновлювати записи щомісяця при собівартості лише двадцять центів за кожен запис. Компанія WorkFusion виявила, що з тим, як системні алгоритми машинного навчання продовжують і далі інкрементно автоматизовувати процес, його собівартість, зазвичай, знижується майже на 50 % після першого року, а після другого року — іще на 25 % [13].

Когнітивне обчислення й програма Watson компанії ІВМ

Восени 2004 року в ресторані м’ясних страв неподалік міста Поукіпсі, що в штаті Нью-Йорк, керівник ІВМ Чарльз Лікель вечеряв з невеличкою групою дослідників. Члени групи страшенно здивувалися, коли рівно о сьомій вечора відвідувачі раптово почали підводитися з-за столиків і скупчуватися довкола телевізора біля стійки бару. Виявилося, що то Кен Дженнінґс, якому раніше вдалося перемогти в понад п’ятдесяти матчах підряд на телегрі з назвою «Ризикуй!», робив чергову спробу побити свій рекорд тривалості переможних матчів. Лікель помітив, що поважні клієнти ресторану настільки захопилися грою, що геть позабували про свої страви і повернулися до них лише тоді, коли телевізійний матч завершився [14].

Цей випадок, принаймні з огляду на численні спогади, став початком зародження ідеї сконструювати комп’ютер, здатний грати — і вигравати у найкращих людей-чемпіонів — на телешоу «Ризикуй!».[18] На той час ІВМ вже мала багату історію інвестування в гучні проекти з назвою «глобальний виклик», втілення яких давало компанії змогу помпезно продемонструвати свою технологію й одночасно забезпечити собі таку гучну рекламу, яку просто неможливо купити за гроші. В результаті реалізації попереднього проекту на зразок «глобальний виклик» комп’ютер Deep

Відгуки про книгу Пришестя роботів: техніка і загроза майбутнього безробіття - Мартін Форд (0)
Ваше ім'я:
Ваш E-Mail: